The Aspinwall-morrison Calculation and Gromov-witten Theory

نویسنده

  • ARTUR ELEZI
چکیده

We connect the Aspinwall-Morrison calculation to GromovWitten theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hodge-type integrals on moduli spaces of admissible covers

Hodge integrals are a class of intersection numbers on moduli spaces of curves involving the tautological classes λi, which are the Chern classes of the Hodge bundle E. In recent years Hodge integrals have shown a great amount of interconnections with Gromov-Witten theory and enumerative geometry. The classical Hurwitz numbers, counting the numbers of ramified Covers of a curve with an assigned...

متن کامل

On Gromov-witten Theory of Root Gerbes

This research announcement discusses our results on Gromov-Witten theory of root gerbes. A complete calculation of genus 0 Gromov-Witten theory of μr-root gerbes over a smooth base scheme is obtained by a direct analysis of virtual fundamental classes. Our result verifies the genus 0 part of the so-called decomposition conjecture which compares Gromov-Witten theory of étale gerbes with that of ...

متن کامل

Givental’s Lagrangian Cone and S-equivariant Gromov–witten Theory

In the approach to Gromov–Witten theory developed by Givental, genus-zero Gromov–Witten invariants of a manifold X are encoded by a Lagrangian cone in a certain infinite-dimensional symplectic vector space. We give a construction of this cone, in the spirit of S-equivariant Floer theory, in terms of S-equivariant Gromov–Witten theory of X × P. This gives a conceptual understanding of the “dilat...

متن کامل

Jim Bryan and Tom

We make a precise mathematical statement of the conjecture that Gromov-Witten theory on an orbifold should be equivalent to Gromov-Witten theory on a crepant resolution (should one exist.) We prove the conjecture for the equivariant Gromov-Witten theories of Symn C and Hilbn C.

متن کامل

The Genus Zero Gromov–witten Invariants of [sym 2 P 2 ]

We show that the WDVV equations determine the genus zero Gromov–Witten invariants of the stack symmetric square of P 2 from the 3-point invariants and certain degree 0 invariants. These degree 0 invariants can be expressed in terms of hyperelliptic Hodge integrals that have been computed by Faber and Pandharipande [11]. A direct comparison with Graber's calculation [12] shows that the Gromov–Wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000